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Abstract. The linear multiplicative programming problem minimizes a product

of two (positive) variables subject to linear inequality constraints. In this paper,

we show NP-hardness of linear multiplicative programming problems and related

problems.
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1. Introduction

In this note, we consider the following problems:

(P1)

minimize x1x2

subject to Ax � b;

(P2)

minimize x1 � 1=x2

subject to Ax � b;

(P3)

maximize 1=x1 + 1=x2

subject to Ax � b;

where x = (x1; x2; : : : ; xd) is a d-dimensional real-valued vector and

the feasible region 
 = fx 2 Rd j Ax � bg satis�es the condition

that for any feasible vector x0 2 
; x01; x
0

2 > 0: Problem P1 is called a

linear multiplicative programming problem. The above problems arise

in many application settings, see the survey (Konno et al., 1995) and the

forthcoming book (Konno et al., 1996). For solving the above problems,

there exist many algorithms (Aneja et al., 1984; Konno et al., 1990;

Konno et al., 1991; Konno et al., 1992; Konno et al., 1992; Kuno et al.,

1991; Pardalos, 1990; Swarup, 1966; Thoai, 1991; Tuy et al., 1992). In

the recent paper (Pardalos et al., 1991), Pardalos and Vavasis asked
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the question whether linear multiplicative programming problems are

polynomially solvable or not. The purpose of this paper is to show

NP-hardness of Problems P1, P2 and P3.

In (Pardalos et al., 1991), Pardalos and Vavasis proved that the

following quadratic concave optimization problem is NP-hard:

(P4) minimize x1 � x22

subject to Ax � b:

We will begin the next section by re�ning on the proof of NP-hardness

of P4 described in (Pardalos et al., 1991). Our new proof o�ers the key

to main results.

2. Preliminaries

As a beginning, we will examine how to calculate the square of a num-

ber. Given a vector x 2 [0; 1]n and a positive integer number p; the

value px1+ p2x2+ p3x3+ � � �+ pnxn is denoted by [x]p: For any vector

x 2 [0; 1]n; the square of [x]p is obtained by the equation:

([x]p)
2 =

nX

i=1

nX

j=1

pi+jxixj:

Now, we describe a method to approximate ([x]p)2 by a linear inequality

system.When i 6= j; we replace the term xixj by a variable yij satisfying

linear inequalities:

0 � yij � 1; yij � xi; yij � xj ; yij � xi + xj � 1: (1)

For all i; we replace xixi by a variable yii satisfying:

yii = xi: (2)

By using y variables, the square of [x]p is approximated by:

nX

i=1

nX

j=1

pi+jyij :
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Linear inequalities (1) imply that if either xi or xj is 0-1 valued,

then yij = xixj: The equality (2) implies that xi 2 [0; 1] is 0-1 valued

if and only if yii = xixi: So, for any 0-1 valued vector x; the equality

([x]p)
2 =
Pn

i=1

Pn
j=1 p

i+jyij holds. However, if a given vector x 2 [0; 1]n

is not 0-1 valued, the equality does not hold in general. Now we consider

the di�erence between ([x]p)2 and
Pn

i=1

Pn
j=1 p

i+jyij, when x is not 0-1

valued.

THEOREM 2.1. Let x 2 Rn and y 2 Rn�n be a pair of vectors satis-

fying:

0 � xi � 1 (for all i);

0 � yij � 1 (for all i; j);

yij � xi; yij � xj; yij � xi + xj � 1 (for all i; j such that i 6= j);

yii = xi (for all i):

(3)

Assume that p is an positive integer, x is not 0-1 valued and there exists

a positive value 0 < " < 1=2 satisfying that each element xi is either

xi = 0; 1 or " < xi < 1 � ": Then the inequality
Pn

i=1

Pn
j=1 p

i+jyij �

([x]p)
2 > p2"=2� pn2 holds.

Proof. Let k be the largest index satisfying 0 < xk < 1: For any

index i > k; xi is 0-1 valued and so yij = xixj for all j: Then we have

the following inequalities;

nX

i=1

nX

j=1

pi+jyij � ([x]p)
2

=
kX

i=1

kX

j=1

pi+jyij +
nX

i=k+1

kX

j=1

pi+jyij

+
kX

i=1

nX

j=k+1

pi+jyij +
nX

i=k+1

nX

j=k+1

pi+jyij �
nX

i=1

nX

j=1

pi+jxixj

=
kX

i=1

kX

j=1

pi+jyij +
nX

i=k+1

kX

j=1

pi+jxixj

+
kX

i=1

nX

j=k+1

pi+jxixj +
nX

i=k+1

nX

j=k+1

pi+jxixj �
nX

i=1

nX

j=1

pi+jxixj

METR95-13.tex; 16/01/1996; 14:42; no v.; p.3



4 TOMOMI MATSUI

=
kX

i=1

kX

j=1

pi+jyij �
kX

i=1

kX

j=1

pi+jxixj

� p2kykk � (p2k(xk)
2 + p2k�1(k2 � 1))

= p2k(xk � (xk)
2)� p2k�1(k2 � 1)

> p2(xk � (xk)
2)� pn2 � p2"=2� pn2

The above theorem says that when p is su�ciently large, the vector

x 2 [0; 1]n is 0-1 valued if and only if
Pn

i=1

Pn
j=1 p

i+jyij�([x]p)
2 is non-

positive. This result gives an idea to show NP-hardness of Problem

P4. To show NP-hardness of Problem P4, we have to transform an

NP-complete problem to the decision version of P4. Here we use the

following NP-complete problem.

SET PARTITION (Garey et al., 1979; Karp, 1972)

INSTANCE : An m� n 0-1 matrix M satisfying n > m:

QUESTION : Is there a 0-1 vector x satisfying Mx = 1 ? (Here, 1

denotes the all one vector.)

Then, it is natural to consider the following problem:

(P4(M)) minimize
Pn

i=1

Pn
j=1 p

i+jyij � (
Pn

i=1 p
ixi)

2

subject to (3) and Mx = 1;

whereM is anm�n 0-1 matrix with n > m: Clearly, when the equality

system Mx = 1 has a 0-1 valued solution, the optimal value of the

above problem is less than or equal to zero. We will discuss the case that

Mx = 1 does not have any 0-1 valued solution. The feasible region of

Problem P4(M), denoted by 
(M); is a bounded polytope. The number

of constraints of Problem P4(M) is equal to n+n2+4(n2�n)+n+m and

so the number of constraints is less than n3; when n � 5: Let (x0;y0)

be a vertex of the polytope 
(M): Since each coe�cient of constraints

is �1, 0 or 1, Cramer's rule implies that each element of (x0;y0) is

0-1 valued or contained in the interval [1=(n3)n
3

; 1 � 1=(n3)n
3

]: This

observation implies the following property.
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THEOREM 2.2. Let M be an m�n 0-1 matrix with n > m and n � 5:

Assume that p = nn
4

: The equality system Mx = 1 has a 0-1 valued

solution if and only if the optimal value of Problem P4(M) is non-

positive. When Mx = 1 does not have any 0-1 valued solution, the

optimal value of P4(M) is greater than p:

Proof. If Mx = 1 has a 0-1 valued solution, it is clear that the

optimal value of Problem P4(M) is non-positive. We consider the case

that Mx = 1 does not have any 0-1 valued solution. For any vertex

(x0;y0) of the polytope 
(M); each element of (x0;y0) is 0-1 valued

or contained in the interval [1=(n3)n
3

; 1 � 1=(n3)n
3

]: Since Mx = 1

does not have any 0-1 valued solution, x0 is not 0-1 valued. Lemma2.1

implies that:

nX

i=1

nX

j=1

pi+jy0ij�(
nX

i=1

pix0i)
2 > p2=(2(n3)n

3

)�pn2 > p(nn
4

=(2nn
3

)�n2) > p

For any feasible solution (x;y) of P4(M), (x;y) is represented by a

convex combination of vertices of 
(M): Since the objective function

of P4(M) is concave, every feasible solution (x;y) satisfy the inequality
Pn

i=1

Pn
j=1 p

i+jyij � (
Pn

i=1 p
ixi)

2 > p:

From the above, we can decide the answer to SET PARTITION

by solving Problem P4(M). The input size of the largest coe�cient

appearing in P4(M) is dlog(p2n)e+1 = dlog(nn
4

)2ne+1 = d2n5 logne+

1; and so the input size of Problem P4(M) is bounded by a polynomial

of n: It implies that Problem P4 is NP-hard.

We can extend the above result to a more general global optimization

problem.

COROLLARY 2.3. Let n be a positive integer with n � 5 and we use

p for nn4 : Assume that g(x0; y0) is a function satisfying the conditions

that:

(1) 8x0 2 [0; npn]; 8y0 2 [0; n2p2n]; if y0 � x20 � 0 then g(x0; y0) � 0;

(2) 8x0 2 [0; npn]; 8y0 2 [0; n2p2n]; if y0 � x20 > p then g(x0; y0) > 0:
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Given an m�n 0-1 matrix M with n > m and n � 5; we de�ne the

problem:

(Pg(M)) minimize g(x0; y0)

subject to (3) and Mx = 1;

x0 =
Pn

i=1 p
ixi;

y0 =
Pn

i=1

Pn
j=1 p

i+jyij:

Then, the optimal value of Pg(M) is non-positive if and only if the

equality system Mx = 1 has a 0-1 valued solution.

3. Main Results

First, we show NP-hardness of Problem P1. We consider the special

function:

g1(x0; y0) = (y0 � p+ 2p4n)2 � 4p4nx20 � 4p8n

= (y0 � p+ 2p4n + 2p2nx0)(y0 � p+ 2p4n � 2p2nx0)� 4p8n

where p = nn
4

and n � 5: We can show that g1(x0; y0) satis�es the

conditions in Corollary 2.3 as follows.

(1) If (x0; y0) satis�es x0 2 [0; npn]; y0 � 0 and y0 � x20 � 0; then

g1(x0; y0) � (y0 � p)2 + 2(y0 � p)2p4n + 4p8n � 4p4ny0 � 4p8n

� (y0 � p)2 � 4p4n+1 � (y0)
2 + p2 � 4p4n+1

� (x0)
4 + p2 � 4p4n+1 � n4p4n + p2 � 4p4n+1 � 0:

(2) If (x0; y0) satis�es y0 � x20 > p and y0 � 0; then

g1(x0; y0) > (x20 + 2p4n)2 � 4p4nx20 � 4p8n = x40 � 0:

From the above, we can show NP-hardness of the problem:

(P1(M)) minimize z1z2

subject to (3) and Mx = 1;

x0 =
Pn

i=1 p
ixi;

y0 =
Pn

i=1

Pn
j=1 p

i+jyij;

z1 = (y0 � p+ 2p4n + 2p2nx0);

z2 = (y0 � p+ 2p4n � 2p2nx0):
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Corollary 2.3 implies that the optimal value of Problem P1(M) is less

than or equal to 4p8n if and only if Mx = 1 has a 0-1 valued solution.

So, we have shown the following theorem.

THEOREM 3.1. Problem P1 is NP-hard.

Proof. When we solve Problem P1(M), we can decide the answer

to SET PARTITION. The largest coe�cient appearing in P1(M) is

2p4n = 2(nn
4

)4n = 2n4n
5

and the threshold value is 4p8n = 4(nn
4

)8n =

4n8n
5

: Thus, the input size of Problem P1(M) and the input size of the

threshold value are bounded by a polynomial of n: Clearly, Problem

P1(M) is a special case of P1 and so we have the desired result.

Here we note that for any feasible solution of P1(M), both z1 > 0

and z2 > 0 hold. Since p is large enough, z1 > 0 is clear. For the variable

z2;

z2 � �p+ 2p4n � 2p2nnpn = �p+ 2p4n � 2np3n

and assumptions n � 5 and p = nn
4

imply the property z2 > 0:

Next, we consider Problem P2. Given three positive values z1; z2 and

a; z1z2 � a2 if and only if z1 � a2=z2 � 0: So, we decide the answer to

SET PARTITION by solving the problem:

(P2(M)) minimize z1 � 1=z3

subject to constraints of Problem P1(M),

z3 = z2=(4p8n):

It is clear that the optimal value of P2(M) is non-positive if and only

if the equality system Mx = 1 has a 0-1 valued solution. So, we have

shown the following theorem.

THEOREM 3.2. Problem P2 is NP-hard.

Lastly, we consider Problem P3. Given three positive values z1; z2

and a; z1z2 � a2 if and only if 1=(z1 + a) + 1=(z2 + a) � 1=a: Thus, we

METR95-13.tex; 16/01/1996; 14:42; no v.; p.7



8 TOMOMI MATSUI

can decide the answer to SET PARTITION by solving the problem:

(P3(M)) maximize 1=z4 + 1=z5

subject to constraints of Problem P1(M),

z4 = z1 + 2p4n;

z5 = z2 + 2p4n:

Clearly, the optimal value of P3(M) is greater than or equal to 1=2p4n

if and only if the equality system Mx = 1 has a 0-1 valued solution.

So, we obtained the following.

THEOREM 3.3. Problem P3 is NP-hard.
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